DeepNilm: A deep learning approach to non-intrusive load monitoring

Nikolaus Starzacher, CEO Shubham Bansal, Data Scientist

> Heidelberg.Al, Germany February 22, 2018

D I S C O V E R G Y

Discovergy in a Nutshell

- Founded in 2009 by Ralf Esser and Nikolaus Starzacher
- Located in Heidelberg and Aachen
- Smart Metering for consumers and businesses
- Communication Gateway developed in-house
- Compatible with any meter for any medium
- Scaleable backend infrastructure for Storage, Visualisation, Alerting, Engagement, Disaggregation and Value Added Services

- Independent metering operator for **Electricity** and **Gas**
- Nationwide network of installers

Discovergy offers full-stack metering operations in Germany

Discovergy in a Nutshell

captured in real-time and sent to Discovergy's server.

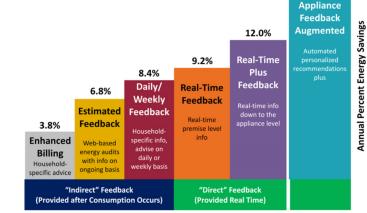
The raw data is securely stored, processed and evaluated by Discovergy using highly specialized algorithms.

receive smart notifications for unusual values.

The problem

- Buildings account for 20-40% of primary energy consumption.
- About 20% of this can be saved through energy efficiency improvements.
- It is believed that these reductions have not been achieved due to behavioural barriers

Energy consumption is a black-box for most people



>12.0%

Image source: Armel, K. Carrie, et al. "Is disaggregation the holy grail of energy efficiency? The case of electricity." Energy Policy 52 (2013): 213-234.

How can we open up the black box?

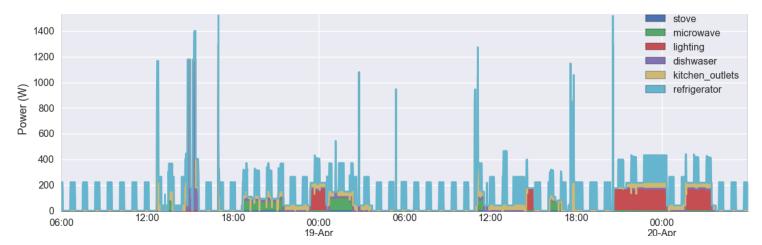
Direct monitoring of each appliance

- Connect each relevant appliance to a smart plug.
- Typical smart plug costs €30. For a typical household the total cost could go upwards of €300.
- High accuracy but can get super expensive

How can we open up the black box?

Non intrusive load monitoring (NILM)

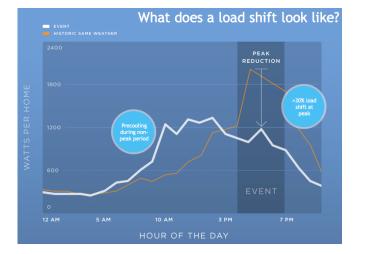
- Statistical/Machine learning techniques can be used to infer the appliance level energy consumption from the aggregate
- Growth in the installation of smart meters which report data at 15 min intervals and faster.



Benefits of Non-intrusive load monitoring



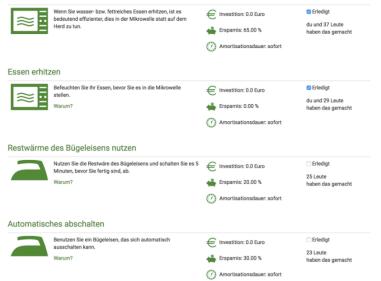
Better understanding of electricity consumption



Demand response

Benefits of Non-intrusive load monitoring

Effizienz der Mikrowelle



Predictive maintenance & faulty appliance detection

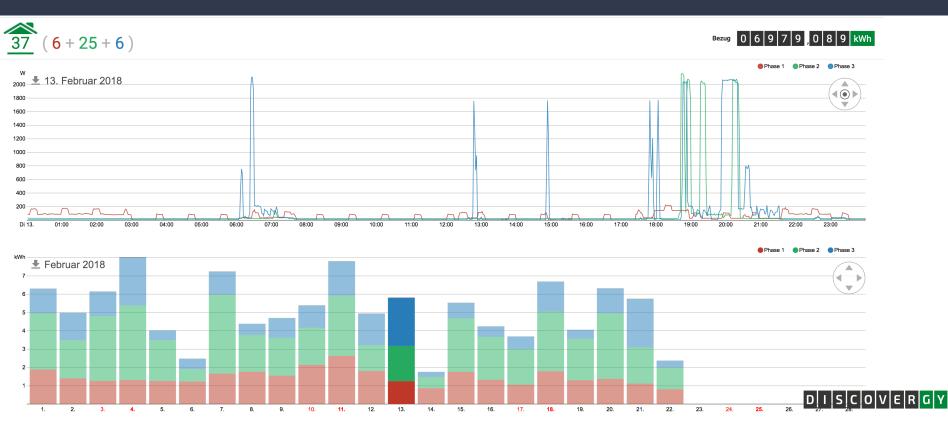
Personalised energy savings tips & notifications

DISCOVERGY

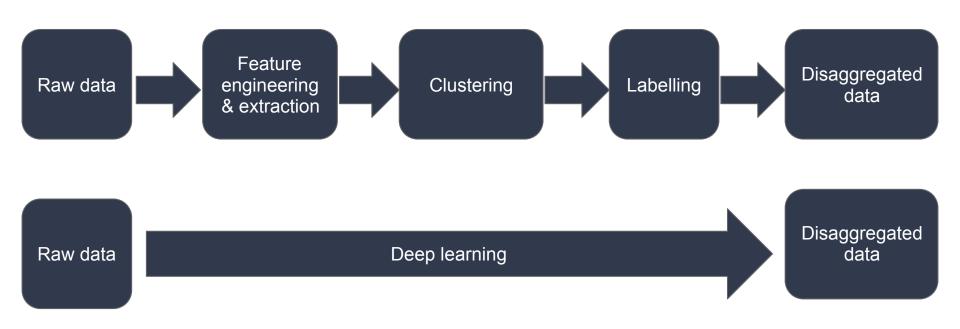
Requirements for NILM Algorithm

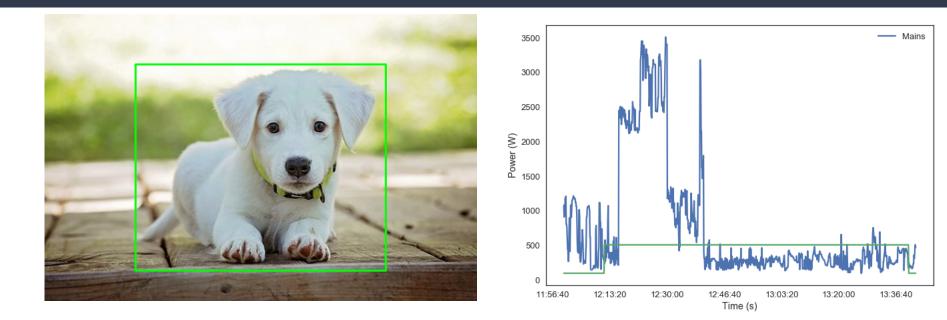
- Works well with data resolutions around 1 Hz
- Generalises well to buildings and homes not seen in the training data
- Modular and flexible: Easy to add models for new appliances
- Computationally scalable during inference
- High accuracy in appliance detection
- Works like magic !

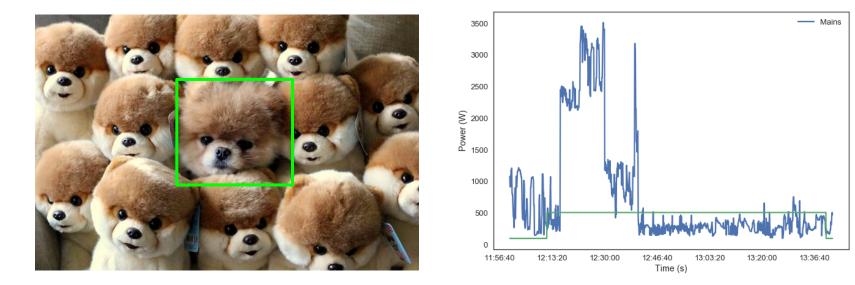
Typical 3-phase smart meter data



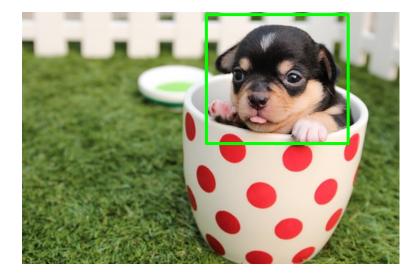
Approach

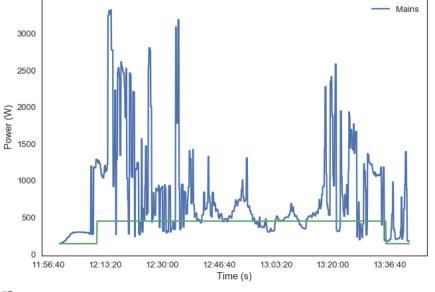




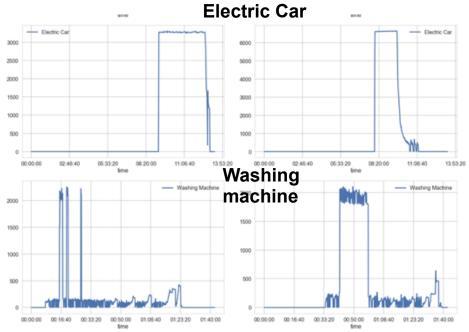


Background Clutter



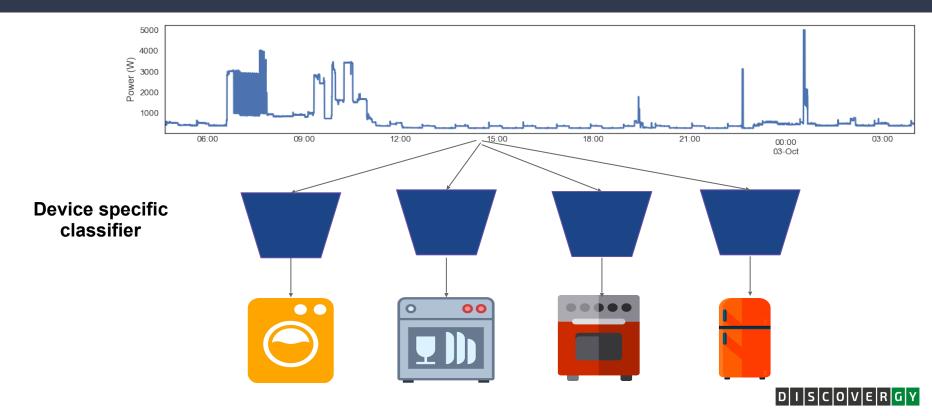


Occlusion

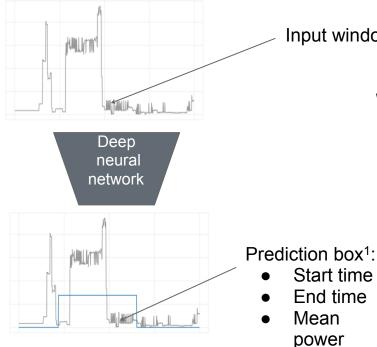


Intra-class variation

Scheme



Deep Learning



Input window

Start time

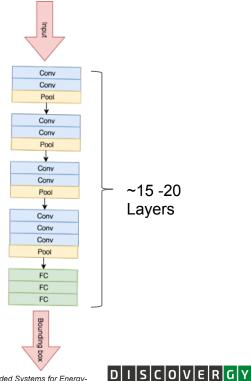
End time

Mean

power

We can answer

- How many times a device was operated and at what time?
- How much energy it consumed during each of those runs?

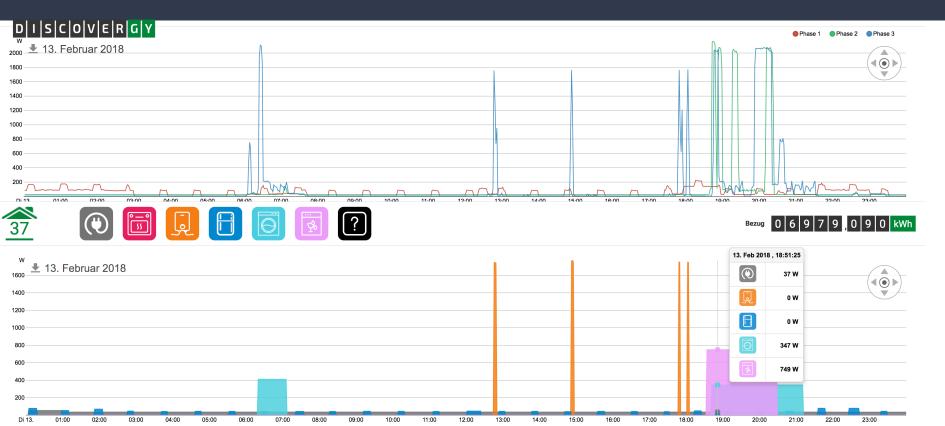


1) Kelly, J., & Knottenbelt, W. (2015, November). Neural nilm: Deep neural networks applied to energy disaggregation. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments (pp. 55-64). ACM.

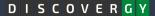
Generalisation Performance to Unseen Houses

	Washing Machine		
Metrics	Train	Validation	Test
Mean Absolute Error (W)	38.86	42.64	10.11
Relative Error	0.1091	0.1082	0.2535
F1 Score	0.9704	0.9595	0.9163
Precision	0.9680	0.9513	0.9107
Recall	0.9727	0.9678	0.9219

Disaggregation in action

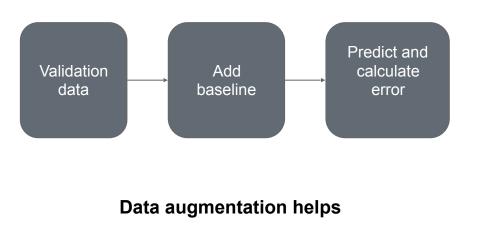


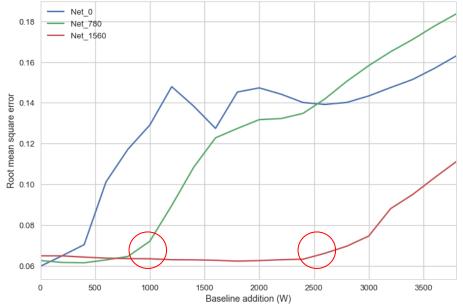
Peeking under the hood



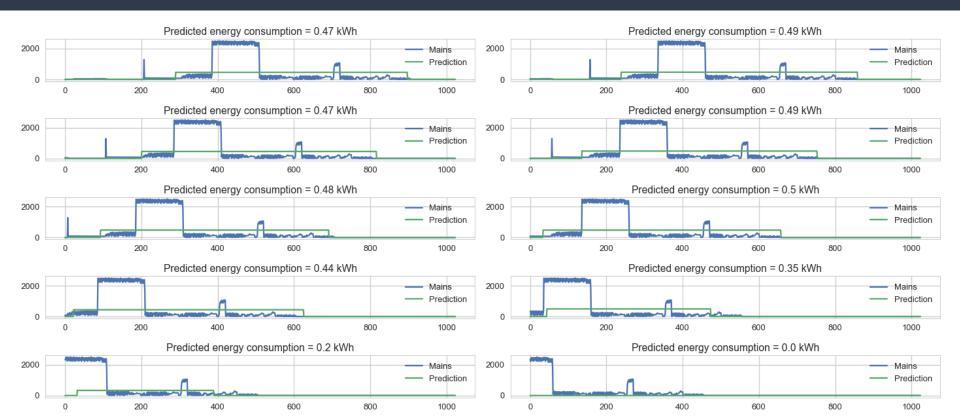
Baseline Invariant

Predicted appliance energy should be invariant to the baseline

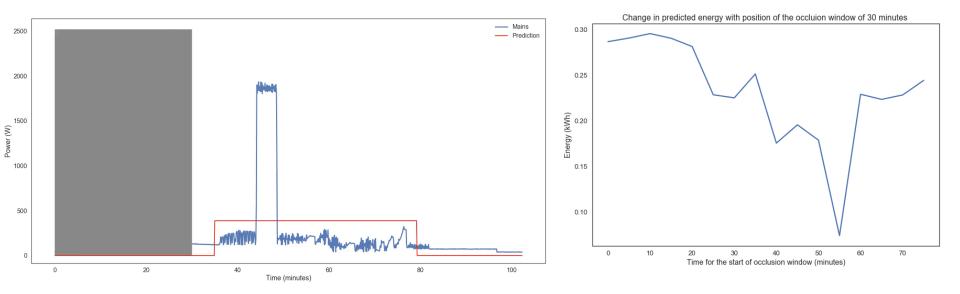




Translation Invariant

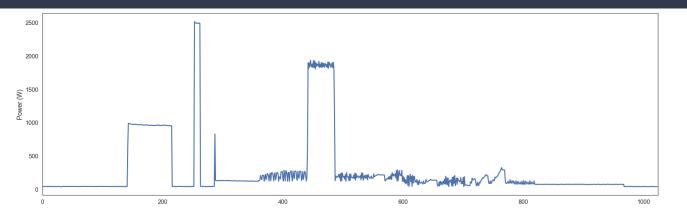


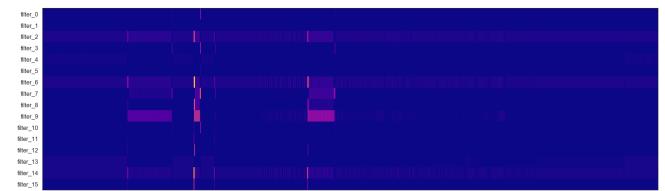
What Features are Important ?



You can view the video here: link

Features Learnt - First Convolutional Layer



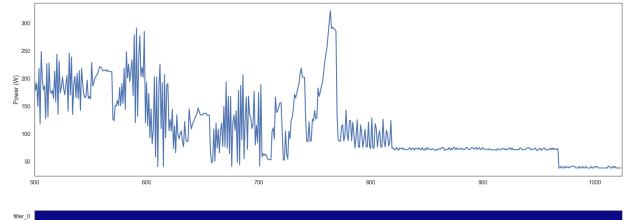


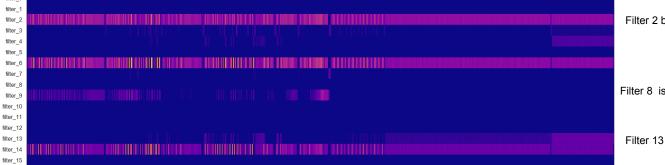
Filter 2 behaves like a rectified difference series Filter 3 is detecting negative edges

Filter 7 is detecting large negative edges Filter 8 is detecting large positive edges Filter 9 is tracking high magnitudes

Activations from the conv1 layer

Zoomed in View



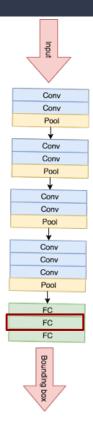


Filter 2 behaves like a rectified difference series

Filter 8 is detecting large positive edges

Filter 13 is detecting sort of minimum in the input

t-SNE Visualization



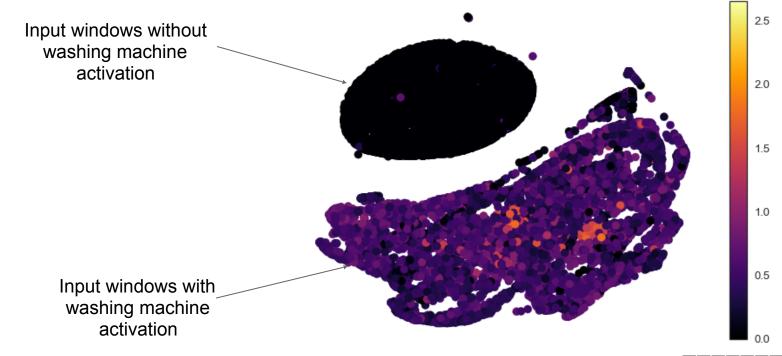
- t-distributed Stochastic Neighbour Embedding
- Dimensionality reduction technique

1

- Preserves pairwise distances approximately
- Take the activations from the last layer before the prediction layer and reduce them to 2-dimensions using t-SNE

DIISCOV

t-SNE Visualization

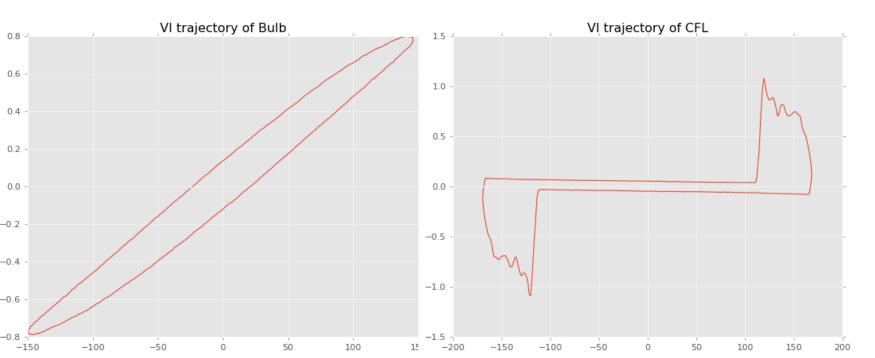


Challenges that we want to tackle

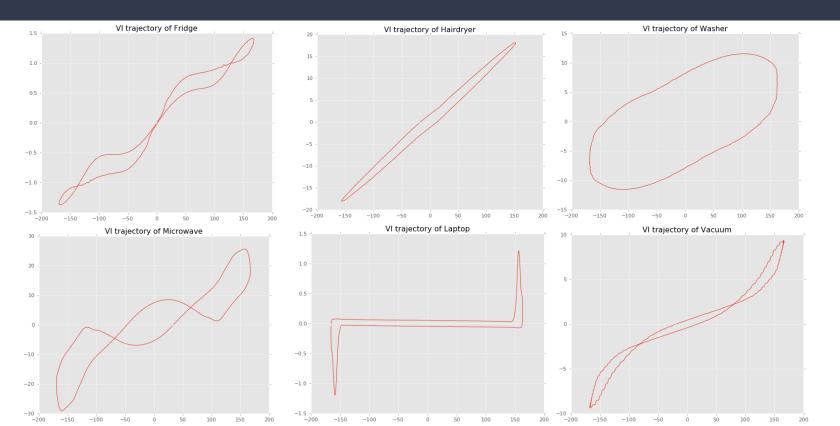
- Take an unsupervised approach for machine learning. Tons and tons of unlabelled data
- Personalise and tweak the appliance models for each user
- Incorporate user feedback into improving the models

High frequency data - Rich Fingerprints

NILM: 8kHz - VI Trajectories



High frequency data - Rich Fingerprints



Thank you

Shubham Bansal Data Scientist, Discovergy GmbH

Say hi to me at sb@discovergy.com

DISCOVERGY